Hamiltonicity of Minimum Distance Graphs of 1-Perfect Codes
نویسنده
چکیده
A 1-perfect code Cn q is called Hamiltonian if its minimum distance graph G(Cn q ) contains a Hamiltonian cycle. In this paper, for all admissible lengths n ≥ 13, we construct Hamiltonian nonlinear ternary 1-perfect codes, and for all admissible lengths n ≥ 21, we construct Hamiltonian nonlinear quaternary 1-perfect codes. The existence of Hamiltonian nonlinear q-ary 1-perfect codes of length N = qn + 1 is reduced to the question of the existence of such codes of length n. Consequently, for q = pr, where p is prime, r ≥ 1 there exist Hamiltonian nonlinear q-ary 1-perfect codes of length n = (qm − 1)/(q − 1), m ≥ 2. If q = 2, 3, 4, then m 6= 2. If q = 2, then m 6= 3.
منابع مشابه
Total perfect codes, OO-irredundant and total subdivision in graphs
Let $G=(V(G),E(G))$ be a graph, $gamma_t(G)$. Let $ooir(G)$ be the total domination and OO-irredundance number of $G$, respectively. A total dominating set $S$ of $G$ is called a $textit{total perfect code}$ if every vertex in $V(G)$ is adjacent to exactly one vertex of $S$. In this paper, we show that if $G$ has a total perfect code, then $gamma_t(G)=ooir(G)$. As a consequence, ...
متن کاملQuasi-Perfect Lee Codes from Quadratic Curves over Finite Fields
Golomb and Welch conjectured in 1970 that there only exist perfect Lee codes for radius t = 1 or dimension n = 1, 2. It is admitted that the existence and the construction of quasi-perfect Lee codes have to be studied since they are the best alternative to the perfect codes. In this paper we firstly highlight the relationships between subset sums, Cayley graphs, and Lee linear codes and present...
متن کاملSignless Laplacian spectral radius and Hamiltonicity of graphs with large minimum degree
In this paper, we establish a tight sufficient condition for the Hamiltonicity of graphs with large minimum degree in terms of the signless Laplacian spectral radius and characterize all extremal graphs. Moreover, we prove a similar result for balanced bipartite graphs. Additionally, we construct infinitely many graphs to show that results proved in this paper give new strength for one to deter...
متن کاملCodes and L(2, 1)-labelings in Sierpiński Graphs
The λ-number of a graph G is the minimum value λ such that G admits a labeling with labels from {0, 1, . . . , λ} where vertices at distance two get different labels and adjacent vertices get labels that are at least two apart. Sierpiński graphs S(n, k) generalize the Tower of Hanoi graphs—the graph S(n, 3) is isomorphic to the graph of the Tower of Hanoi with n disks. It is proved that for any...
متن کاملSome results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs
Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 19 شماره
صفحات -
تاریخ انتشار 2012